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D NΓ ∪ Γ = ∂Ω  and D N .φΓ ∩ Γ =  Furthermore, ρ(u), u  
and q  are known functions in Ω, on ΓD and on ΓN, 
respectively. In addition, n and the superscript (k) indicate 
an outward unit normal on ∂Ω and an iteration number 
label, respectively. The above step is repeated until 
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Abstract — A new method has been proposed for 
implementing essential boundary conditions to the Element-
Free Galerkin Method (EFGM) without using the Lagrange 
multiplier. The basic idea of the method is to use interpolation 
functions of a small support radius. The performance of the 
proposed method has been investigated for the nonlinear 
Poisson problem. The results of computations show that, as 
interpolation functions become closer to delta functions, the 
accuracy of the solution is improved on the boundary. In 
addition, by means of the proposed method, the accuracy of 
the solution is also improved in the vicinity of the boundary. 
Therefore, it might be concluded that the proposed method is 
useful for solving the nonlinear Poisson problem. 

( ) ( 1)/k ku u u 1010k+ + −≤−  is satisfied. 
In the classical EFGM, the essential boundary condition 

is incorporated into a weak form through Lagrange 
multiplier. In this section, we explain a new method for 
implementing the essential boundary condition to the 
EFGM without using the Lagrange multiplier. 

Let us first discretize the essential boundary condition 
(2). Apparently, (2) is equivalent to the proposition: I. INTRODUCTION 

Many meshless approaches have been proposed and 
have yielded excellent results in the fields of the shielding 
current analysis of the high-temperature superconductor [1, 
2] and the analysis of the electromagnetic-wave scattering 
problem [3] etc. However, meshless approaches are 
plagued by the following difficulty: the method for 
implementing the essential boundary condition is different 
according to meshless approaches. For example, as the 
implementation method, the Lagrange multiplier and the 
penalty method are used in the Element-Free Galerkin 
Method (EFGM) [4] and the meshless local Petrov-
Galerkin method, respectively. If a new implementation 
method of the essential boundary condition were proposed 
without dependence on meshless approaches, the above 
demerit could be completely resolved. 

The purpose of the present study is to propose a new 
method for implementing the essential boundary condition 
to the EFGM and to evaluate the performance of the 
proposed method by comparing with the conventional 
method. 

II. EXTENDED ELEMENT-FREE GALERKIN METHOD 
In the present study, we consider a 2D nonlinear 

Poisson problem with the inhomogeneous term ρ(u) which 
has a nonlinear dependence on the dependent variable. By 
using the successive substitution method, the solution u is 
determined by means of the iterative procedure. In the kth 
step, we solve the following linear problem for u(k+1): 

  (1) ( 1) ( )( ) in ,k ku uρ+−Δ = Ω

 ( 1)
Don ,ku u+ = Γ  (2) 

 ( 1) ( 1)
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where Ω denotes a region bounded by a simple closed 
curve ∂Ω and the curve satisfies the following relations: 
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where s denotes an arclength along ∂Ω. Furthermore,  ˆ ip
( 1, 2, , )i M=  are all constants. By using (5), (4) can be 
discretized as 

 ( 1)ˆ .T kC + =u g  (6) 
Here, C and g are defined by 
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where φi’s are shape functions obtained by the moving 
least-square approximation. 

Next, the weak form can be similarly discretized as 
 ( 1) ( )ˆ ˆ ˆ ˆs.t. 0 : ,T k kC A +⎡∀ = −⎣w w w u f 0=⎦  (9) 
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Here, A and f(k) are defined by 
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By combining (6) with (9), we can obtain a linear 
system. In this way, the nonlinear Poisson problem is 
reduced to the problem in which the linear system is solved. 
Throughout the present study, the above method is called 
the eXtended Element-Free Galerkin Method (X-EFGM). 
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As mentioned above, p is an arbitrary function. 
Therefore,  can be selected arbitrarily. For example, 
if  is given by the Lagrange interpolant, the X-EFGM 
becomes equivalent to the classical EFGM. In the present 
study, a function Ni(ξ) is given by 

( )iN s
( )iN s

( )( , ) ( )e jσ 2 / ( )e jN lξ δ Ψ ξ=  (see Fig.1). Here, σ(e, j) and le 
are the global number of the jth local node in the eth 
integration cell and the length of eth integration cell, 
respectively. 

III. NUMERICAL RESULTS 

In this section, we investigate the performance of the X-
EFGM by comparing with the classical EFGM. Throughout 
the present study, the target region Ω is given by Ω ≡        
(0, 1) ×  (0, 1) and ρ(u) is assumed as  
Obviously, the analytic solution of the nonlinear Poisson 
problem is given by 

( ) ( )3u u uρ −= +

)

/ 2.

(sin .u x y= +  In addition, we adopt 

a particular solution of −Δu = 0 as the initial solution u(1) 
and its explicit form is written as u(1) = − cosh x sin y          
+ cos x sinh y. 

Let us first investigate the influence of Ni(ξ) on the 
accuracy of the X-EFGM for the Dirichlet problem. As the 
measure of the accuracy, we adopt the relative error defined 
by 
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The relative error of the X-EFGM is calculated as a 
function of the dimensionless support radius δ  and is 
depicted in Fig. 2. We see from this figure that the relative 
error decreases monotonously with a decrease in .δ  This 
tendency does not depend on the total number N of nodes. 
The above result indicates that the accuracy of the X-
EFGM becomes high for the case with ( ) ( ).i iN ξ δ ξ ξ≈ −  
For this reason, Ni(ξ) is fixed as Ni(ξ) = δ(ξ − ξi), hereafter. 

Next, we investigate both the accuracy of the X-EFGM 
and that of the classical EFGM. As the measure of the 
accuracy of the numerical solution, we adopt the error: 
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where subscript notations, A and N, are analytic and 
numerical solutions, respectively. Typical examples of the 
error distribution are shown in Figs. 3(a) and 3(b). We see 

from these figures that the accuracy of the X-EFGM is 
higher than that of the classical EFGM in the vicinity of ∂Ω. 

From these results, it might be concluded that the X-
EFGM is useful for solving the nonlinear Poisson problem. 

IV. CONCLUSION 

By using a new method for implementing the essential 
boundary condition to the EFGM, we have developed the 
X-EFGM. In addition, we have investigated its 
performance by comparing with the classical EFGM. 
Conclusions obtained in the present study are summarized 
as follows. 
1)  When the value of δ  decreases, the accuracy of the 

numerical solution is drastically im roved on ∂Ω. p
2)  In the X-EFGM, the accuracy of the numerical solution 

is also improved in the vicinity of ∂Ω. 
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Fig. 2. Dependence of the relative error Bε  on the dimensionless support 

radius .δ  Here, : N = 81 and ▽ : N = 529. ▲

 

    

 
Fig. 1. The graphs of Ψ1(ξ) and Ψ2(ξ). 

(a) Classical EFGM (b) X-EFGM 
Fig. 3. The error distribution for the case with (a) the classical EFGM and 
(b) the X-EFGM (N = 49). The gray region indicates that 2

D ( ) 10ε −≤x  is 
satisfied. 
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